Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward
نویسندگان
چکیده
The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and was positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease.
منابع مشابه
Evaluation of the effect of orexin-1 receptors in the nucleus accumbens shell on cost-benefit decision making in male rats
Background: Cost-benefit decision-making is a one of the decision-making models in which the animal achieves a final benefit (reward) by evaluating the cost (effort or delay). The role of different brain regions such as nucleus accumbens in this process has been proven. Orexin is a neuropeptide expressed exclusively by lateral hypothalamus area neurons and orexin-producing neurons project their...
متن کاملCell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of Tr...
متن کاملActivation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation
Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhan...
متن کاملFunctional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study
This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...
متن کاملFosB Regulates Wheel Running
FosB is a transcription factor that accumulates in a regionspecific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of FosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of FosB in striatal regions. Moreover, mice that indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 87 شماره
صفحات -
تاریخ انتشار 2015